Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Hazard Mater ; 456: 131654, 2023 08 15.
Article in English | MEDLINE | ID: covidwho-2320886

ABSTRACT

Functional face masks that can effectively remove particulate matter and pathogens are critical to addressing the urgent health needs arising from industrial air pollution and the COVID-19 pandemic. However, most commercial masks are manufactured by tedious and complicated network-forming procedures (e.g., meltblowing and electrospinning). In addition, the materials used (e.g., polypropylene) have significant limitations such as a lack of pathogen inactivation and degradability, which can cause secondary infection and serious environmental concerns if discarded. Here, we present a facile and straightforward method for creating biodegradable and self-disinfecting masks based on collagen fiber networks. These masks not only provide superior protection against a wide range of hazardous substances in polluted air, but also address environmental concerns associated with waste disposal. Importantly, collagen fiber networks with naturally existing hierarchical microporous structures can be easily modified by tannic acid to improve its mechanical characteristics and enable the in situ production of silver nanoparticles. The resulting masks exhibit excellent antibacterial (>99.99%, 15 min) and antiviral (>99.999%, 15 min) capabilities, as well as high PM2.5 removal efficiency (>99.9%, 30 s). We further demonstrate the integration of the mask into a wireless platform for respiratory monitoring. Therefore, the smart mask has enormous promise for combating air pollution and contagious viruses, managing personal health, and alleviating waste issues caused by commercial masks.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Antiviral Agents , Pandemics/prevention & control , COVID-19/prevention & control , Silver , Dust , Anti-Bacterial Agents/pharmacology , Collagen
2.
Journal of Basic and Clinical Pharmacy ; 11(3):1-1, 2020.
Article in English | CAB Abstracts | ID: covidwho-2012258

ABSTRACT

This study provides a simple, widely available deterrence medication to minimize COVID-19 infection using by tea and coffee infusions. By mixing white with an equal amount of water, add a small amount of tea/coffee infusion. Dull brownish albumen-tannin complex, a soft precipitate is formed and sinks to the bottom. The infusion should reach the furthest points in the respiratory tract so that a maximum number of viral particles are trapped. It is necessary to hold the infusion rolling about for a little while, 20 seconds in the mouth before swallowing. Gargling with the infusion is better. Tannins in tea or coffee infusions will form complexes with the 4-5 types of viral surface proteins [spikes], rendering them ineffective. Protein-tannin astringent complexation is a fundamental chemical reaction and is bound to act, unlike specific antimetabolites or enzyme-mediated actions of antibiotics. In fact, tannins react to some extent with the cell lining of the mucous membranes of the mouth and stomach. Tannins also chelate iron [Fe] and other metal ions required for many of the metabolic reactions of micro-organisms [viruses?], depriving them of these nutrients and further retarding their propagation. Two gargles per day, 12 hours apart, are recommended to disable the virus and eventually kill it. The procedure disables free viruses before tissue invasion. Therefore, the earlier the gargle commences, the better. Suspected contacts should preferably have three daily eight-hourly gargles. Astringent activity is an added activity of tea and coffee, demonstrated in this study [using E. coli and Salmonella] to that of immune boosting action generally spoken about.

3.
Menara Perkebunan ; 90(1):11-22, 2022.
Article in Indonesian | CAB Abstracts | ID: covidwho-1934873

ABSTRACT

The SARS-CoV-2 virus is a virus that emerged in late 2019 and has yet to find a cure. On the other hand, the incidence of cervical cancer in women continues to increase along with the emergence of cases of COVID-19 caused by SARS-CoV-2. Based on WHO data in 2020 stated that there were 107 per 72,314 cancer patients infected with SARS-CoV-2. Meniran (Phyllanthus niruri L.) is a herbaceous plant in Indonesia that has secondary metabolites derived from the tannin group, such as corilagin. This compound has the potential to be developed as an antiviral and anticancer agent. Thus, the purpose of this study was to determine the potential of corilagin in meniran herbs to act as an antiviral SARS-CoV-2 and cervical anticancer compared to the drug compounds molnupiravir and paclitaxel through the STITCH & STRING bioinformatics in silico test and molecular docking method. The results of the bioinformatics test of corilagin against the SARS-CoV-2 virus showed predictions of high protein binding to AGTR2 and ENPEP with a docking score of -10.9 and -9.9 kcal/mol, respectively. Meanwhile, cervical cancer cells showed the highest predicted protein binding to IL-10 and MAPK3 with a docking score of -10.5 and -10.8 kcal/mol. The docking score of molnupiravir against the COVID-19 virus protein, AGTR2, and ENPEP were -7.4 and -7.2 kcal/mol, respectively. The docking scores of paclitaxel for IL10 and MAPK3 were -8.2 and -8.9 kcal/mol, respectively. These values indicate that the activity of corilagin with proteins AGTR2, ENPEP, IL10, and MAPK3 has stronger affinity energy than the comparison drugs molnupiravir and paclitaxel. Thus, the corilagin compound from the tannin group in meniran (Phyllanthus niruri L.) has the potential to be developed and formulated as a treatment and prevention of SARS-CoV-2 antiviral and cervical anticancer.

4.
J Transl Med ; 20(1): 314, 2022 07 14.
Article in English | MEDLINE | ID: covidwho-1933145

ABSTRACT

BACKGROUND: The outbreak of SARS-CoV-2 continues to pose a serious threat to human health and social. The ongoing pandemic of COVID-19 caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made a serious threat to public health and economic stability worldwide. Given the urgency of the situation, researchers are attempting to repurpose existing drugs for treating COVID-19. METHODS: We first established an anti-coronavirus drug screening platform based on the Homogeneous Time Resolved Fluorescence (HTRF) technology and the interaction between the coronavirus spike protein and its host receptor ACE2. Two compound libraries of 2,864 molecules were screened with this platform. Selected candidate compounds were validated by SARS-CoV-2_S pseudotyped lentivirus and ACE2-overexpressing cell system. Molecular docking was used to analyze the interaction between S protein and compounds. RESULTS: We identified three potential anti-coronavirus compounds: tannic acid (TA), TS-1276 (anthraquinone), and TS-984 (9-Methoxycanthin-6-one). Our in vitro validation experiments indicated that TS-984 strongly inhibits the interaction of the coronavirus S protein and the human cell ACE2 receptor. Additionally, tannic acid showed moderate inhibitory effect on the interaction of S protein and ACE2. CONCLUSION: This platform is a rapid, sensitive, specific, and high throughput system, and available for screening large compound libraries. TS-984 is a potent blocker of the interaction between the S-protein and ACE2, which might have the potential to be developed into an effective anti-coronavirus drug.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Humans , Molecular Docking Simulation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Tannins/metabolism
5.
Journal of Animal and Plant Sciences ; 51(3):9313-9342, 2022.
Article in French | CAB Abstracts | ID: covidwho-1865763

ABSTRACT

This study was undertaken to identify herbal remedies that may be involved in the symptomatic management of COVID-19 disease. From a list of 247 medicinal plants, a bibliographic study was carried out with the richness, the floristic composition, the methods of preparation and use and the active principles of the plants as a variable. The importance value of these plants was also calculated. A Principal Component Analysis showed the links between the parts of plants used, the methods of preparation, the symptoms of COVID-19 disease that can be treated and the active ingredients. The results show that 226 medicinal plants divided into 190 genera and 79 families can be used to treat the symptoms of COVID- 19 disease namely otolaryngologic signs, pulmonary signs and general signs. Of these, twenty-eight (28) can relieve the majority of symptoms of COVID-19 disease. These symptoms are rhinorrhea, cough, fever, headache, vomiting, diarrhea, and muscle aches. These plants are mainly prepared in the form of a decoction and administered mainly orally. They mainly contain flavonoids, coumarins, alkaloids, tannins, steroids, terpenoids, saponosides, essential oils, mucilages, quinones, coumarins. The importance value of these plants is between 85.71 and 57.14%. The results also showed that eight (8) groups of medicinal plants can be distinguished according to the organs used, the methods of preparation, the symptoms of the COVID-19 disease treated and the active ingredients. The results of this study could serve as a database for the formulation of improved traditional drugs in the management of symptoms of COVID-19 disease in Cote d'Ivoire.

6.
Journal of Drug Delivery and Therapeutics ; 12(2):87-99, 2022.
Article in English | CAB Abstracts | ID: covidwho-1841785

ABSTRACT

Plant Based Natural Products (PBNPs) have been subject of interest since ancient time due to their use in food, industrial and biomedical applications. Research attention has further augmented to explore their phytochemical composition, properties, and potential application in the post-COVID era. In the present study phytochemical screening has been carried out with Methanolic Leaf Extracts of Moringa oleifera (MLEMO) followed by Gas Chromatography-Mass Spectrometry (GCMS) analysis. Phytochemical analysis of MLEMO revealed the presence of Alkaloids, Carbohydrates, Coumarins, Flavonoids, Glycosides, Phenol, Proteins, Quinones, Saponins, Steroids, Tannins and Terpenoids. Further, GCMS analysis revealed the presence of 41 compounds of which Dihydroxyacetone;Monomethyl malonate;4H-Pyran-4-one,2,3-dihydro- 3,5-dihydroxy-6-methyl;1,3-Propanediol, 2-ethyl-2-(hydroxymethyl);Propanoic acid, 2- methyl-, octyl ester;3-Deoxy-d-mannoic lactone;Sorbitol;Inositol;Cyclohexanemethanol, alpha-methyl-4-(1-methylethyl), Hexadecanoic acid, Methyl palmitate;n-Hexadecanoic acid (Palmitic acid);9-Octadecenoic acid, methyl ester;Phytol;9,12,15-Octadecatrienoic acid;Octadecanoic acid;9-Octadecenamide were prominent. Most of the compounds in the list are bioactive and possess medicinal properties that are expected to serve as a baseline lead for the development of therapeutic agents.

7.
Agronomy ; 12(4):796, 2022.
Article in English | ProQuest Central | ID: covidwho-1809651

ABSTRACT

Duckweeds are the smallest flowering plants on Earth. They grow fast on water’s surface and produce large amounts of biomass. Further, duckweeds display high adaptability, and species are found around the globe growing under different environmental conditions. In this work, we report the composition of 21 ecotypes of fourteen species of duckweeds belonging to the two subfamilies of the group (Lemnoideae and Wolffioideae). It is reported the presence of starch and the composition of soluble sugars, cell walls, amino acids, phenolics, and tannins. These data were combined with literature data recovered from 85 publications to produce a compiled analysis that affords the examination of duckweeds as possible food sources for human consumption. We compare duckweeds compositions with some of the most common food sources and conclude that duckweed, which is already in use as food in Asia, can be an interesting food source anywhere in the world.

8.
Iranian Journal of Pharmaceutical Sciences ; 17(2):87-104, 2021.
Article in English | Scopus | ID: covidwho-1727160

ABSTRACT

COVID-19 is an infectious disease that started at the end of 2019 in China then became pandemic worldwide. A number of crystal structures of coronavirus proteins are available in the Protein Data Bank. In this paper, we reported results from the virtual screening of databases including 2701 FDA approved drugs against five known coronavirus protein targets. Our results showed a wide range of scores for different drugs of which some were predicted to be active against one or some of the proteins. Among all of the compounds with higher scores, tannic acid and cobicistat showed to be active against four and two of the studied proteins respectively. Tannic acid which was reported to be an antiviral and potent inhibitor of hepatitis C virus activity and cobicistat with anti-HIV activity might be useful for the cure of COVID-19. According to the results, we suggest more studies on these valuable potential drugs. © 2021, Iranian Association of Pharmaceutical Scientists. All rights reserved.

9.
Zeitschrift f..r Phytotherapie ; 41(3):111-112, 2020.
Article in German | CAB Abstracts | ID: covidwho-1629416

ABSTRACT

Coronavirus diseases, especially infections in the context of the current Covid-19 pandemic, currently make up most of the medical work in the private practice area of internal medicine and general medicine. There is a therapeutic dilemma as to which strategies are successful in prevention and treatment. Regardless of this, therapies for prophylaxis and treatment of infections using strategies from phytotherapy are hardly considered in the general hectic pace. Protective but still experimental strategies suggest that a blockade of specific viral adhesion factors by natural substances can change the viral entry point. This could significantly change both the docking behavior of the virus particles and the disposition to disease. From the field of natural substances, there are many plants that contain a large amount of tannins. These secondary phytonutrients contain so-called proanthocyanidins, hydrolyzable tannins and lamiacene tannins. In particular, proanthocyanidins (green tea, sorrel herb, rockrose herb, etc.) occur frequently in medicinal plants and can be used for prophylaxis and, if necessary, therapy, so that the use of highly concentrated tannin extracts in local therapy can significantly inhibit the docking behavior of viruses. With this knowledge, 125 patients have been in a family doctor's practice (male=68, female=57, average age 54.6 years;diseases: hypertension, osteoarthritis, type 2 diabetes mellitus, etc.) since February 2020 for a period of at least 6 weeks treated (Cystus 052 organic throat lozenges 3 x 2, Nisita nasal ointment 2 x daily). Patients were regularly checked clinically using laboratory tests. This collective could be subdivided into a prophylactic group (n=81) of fewer and into a group of highly endangered (n=44) patients (medical staff, nursing staff, fire fighters, rescue services, etc.). In addition to regular temperature measurements by the patients themselves, but also by means of laboratory parameters (blood count, CRP, procalcitonin, etc.), the mode of infection (if infection occurred: yes-no) was checked regularly.

10.
Am J Cancer Res ; 10(12): 4538-4546, 2020.
Article in English | MEDLINE | ID: covidwho-1013793

ABSTRACT

The cell surface protein TMPRSS2 (transmembrane protease serine 2) is an androgen-responsive serine protease important for prostate cancer progression and therefore an attractive therapeutic target. Besides its role in tumor biology, TMPRSS2 is also a key player in cellular entry by the SARS-CoV viruses. The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has resulted in huge losses in socio-economy, culture, and human lives for which safe and effective cures are highly demanded. The main protease (Mpro/3CLpro) of SARS-CoV-2 is a critical enzyme for viral propagation in host cells and, like TMPRSS2, has been exploited for treatment of the infectious disease. Numerous natural compounds abundant in common fruits have been suggested with anti-coronavirus infection in the previous outbreaks of SARS-CoV. Here we show that screening of these compounds identified tannic acid a potent inhibitor of both SARS-CoV-2 Mpro and TMPRSS2. Molecular analysis demonstrated that tannic acid formed a thermodynamically stable complex with the two proteins at a KD of 1.1 mM for Mpro and 1.77 mM for TMPRSS2. Tannic acid inhibited the activities of the two proteases with an IC50 of 13.4 mM for Mpro and 2.31 mM for TMPRSS2. Mpro protein. Consistently, functional assays using the virus particles pseudotyped (Vpp) of SARS-CoV2-S demonstrated that tannic acid suppressed viral entry into cells. Thus, our results demonstrate that tannic acid has high potential of developing anti-COVID-19 therapeutics as a potent dual inhibitor of two independent enzymes essential for SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL